

Therapeutic Carbon Dioxide Literature

The scientific basis of our technology

Carbon dioxide gas is applied to the skin after enclosing the affected area with a plastic sleeve or the affected limb is placed in a carbon dioxide-rich bath. Multiple periodic applications are most effective to obtain the full response.

Clinical and Animal Studies

Helps tissue to heal

- Improves blood flow and preserves tissue in peripheral vascular disease – human, rat (1-4)
- 2. Improves the vascular damage from diabetes rat, human (5-7)
- 3. Improves acceptance of skin flaps rat, equine (8)
- 4. Improves wound healing human, equine (9,10)
- 5. Hastens fracture closure rat (11,12)

Improves collaterals in the ischemic limb

1. Activates process for new blood vessels - rat (13)

Heals skeletal muscle

- 1. Improves muscle recovery after nerve injury rat (14)
- 2. Reverses loss of oxidative capacity due to diabetes rat (15)
- 3. Improves endurance rat, human (16,17)

Reduces inflammation in lungs and peritoneum

- 1. Better than air or helium during laparoscopy (18,19)
- 2. Improves ARDS and Covid-19 lung inflammation (20)

Shrinks tumors

- 4. Reduces tumor growth rat, mice (21-23)
- 5. Enhances the effectiveness of chemotherapy and radiation therapy rat (24,25)

Physiological Actions of Carbon Dioxide

Anti-Inflammation

1. Moderates NF-kappa B (26)

Increases blood flow

- 1. Vasodilation (27)
- 2. Nitric oxide dependent (28)

Increases tissue oxygenation

1. Forces oxygen release from hemoglobin through the Bohr effect (27,29)

Activates normoxic angiogenesis

- 1. In resting skeletal muscle (30)
- 2. During fracture repair (11,12)
- 3. Muscle atrophy and contracture after nerve damage (14,31)
- 4. Muscle atrophy after fracture (32)
- 5. Hyperglycemia capillary preservation (7)
- 6. Releases VEGF in cultured endothelial cells (33)

Combats reactive oxygen species

1. Critical and potent anti-oxidant (34,35)

Oxygenates tumors

1. Moderates hypoxia inducible factor (HIF1) (22,36)

- 2. Moderates metalloproteases MMP (21)
- 3. Increases tumor apoptosis (37)

Cell Biology of Carbon Dioxide

Facilitated diffusion

- 1. Aquaporin allows for rapid diffusion of CO2 into the cells (38)
- 2. Carbonic anhydrase maintains driving force by rapidly converting CO2 to bicarbonate (39)

Forces release oxygen from red cells

1. Bohr effect - (40)

Connexin 26 as sensor

1. Opens gap junction when detects CO2, and releases ATP. Astrocytes. Regulates neural blood flow and breathing (41)

Angiogenesis

1. Releases VEGF from endothelial cells (13,42)

Increases oxidative metabolism

1. Increases oxidative metabolism by mediating mitochondrial biogenesis through gene expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a), sirtuin 1 (SIRT1), and VEGF, as well as in the number of mitochondria. (30)

Adenylyl cyclase

1. Evolutionarily conserved sensor (43)

Mitogen-activated protein kinase (MAPK) signaling pathways

1. Carbon dioxide sensor for many functions (20)

Therapeutic Elevations of Carbon Dioxide Concentration

Whole body by inducing hypercapnia (increased inspired concentration of CO2)

1. Improved blood flow and tissue oxygenation (36,44-49)

Localized external application of CO2

- 1. Gas is applied to the skin by filling a plastic sleeve covering the affected area
- 2. Gas readily diffuses through the skin, especially when the skin is wet (50-52)
- 3. Solubility in various tissues 30x more soluble than oxygen in water (53)
- 4. Treat every 1-3 days for about 2 weeks (54)

References

1. Izumi Y, Yamaguchi T, Yamazaki T, et al. Percutaneous Carbon Dioxide Treatment using a Gas Mist Generator Enhances the Collateral Blood Flow in the Ischemic Hindlimb. *J Athero and Thromb* 2015;22:38-51

2. Hartmann BR, Bassenge E, Hartmann M. Effects of Serial Percutaneous Application of Carbon Dioxide in Intermittent Claudication: Results of a Controlled Trial. *Angiology* 1997;48:957-963

3. Fabry, Monnet, Schmidt, et al. Clinical and microcirculatory effects of transcutaneous CO2 therapy in intermittent claudication. Randomized double-blind clinical trial with a parallel design. *Vasa* 2009;38:213-224

4. Savin E, Bailliart O, Bonnin P, et al. Vasomotor Effects of Transcutaneous CO2 in Stage II Peripheral Occlusive Arterial Disease. *Angiology* 1995;46:785-791

5. Macura M, Ban Frangez H, Cankar K, Finžgar M, Frangez I. The effect of transcutaneous application of gaseous CO2 on diabetic chronic wound healing—A double-blind randomized clinical trial. *International Wound Journal* 2020;17:1607-1614

6. Xu Y, Elimban V, Bhullar SK, Dhalla NS. Effects of CO2 water-bath treatment on blood flow and angiogenesis in ischemic hind limb of diabetic rat. *Can J Physiol and Pharm* 2018;96:1017-1021

7. Matsumoto T, Tanaka M, Ikeji T, et al. Application of transcutaneous carbon dioxide improves capillary regression of skeletal muscle in hyperglycemia. *J Physiol Sci* 2019;69:317-326

8. Saito I, Hasegawa T, Ueha T, et al. Effect of local application of transcutaneous carbon dioxide on survival of random-pattern skin flaps. *J Plast Reconstr Aes* 2018;71:1644-1651

9. Levine D. Scientific Presentation Abstracts: 2019 ACVS Surgery Summit October 16-18, Las Vagas, Neveda. *Vet Surg* 2019;:E1-E69

10. Wollina U, Heinig B, Uhlemann C. Transdermal CO2 Application in Chronic Wounds. *Internat J Lower Extremity Wounds* 2004;3:103-106

11. Koga T, Niikura T, Lee SY, et al. Topical cutaneous CO2 application by means of a novel hydrogel accelerates fracture repair in rats. *J Bone Joint Surg* (American volume) 2014;96:2077-2084

12. Oda T, Iwakura T, Fukui T, et al. Effects of the duration of transcutaneous CO2 application on the facilitatory effect in rat fracture repair. *J Orthop Sci* 2019;

13. Irie H, Tatsumi T, Takamiya M, et al. Carbon dioxide-rich water bathing enhances collateral blood flow in ischemic hindlimb via mobilization of endothelial progenitor cells and activation of NO-cGMP system. *Circulation* 2005;111:1523-1529

14. Nishimoto H, Inui A, Ueha T, et al. Transcutaneous carbon dioxide application with hydrogel prevents muscle atrophy in a rat sciatic nerve crush model. *J Orthop Res* 2018;36:1653-1658

15. Matsumoto T, Tanaka M, Nakanish R, et al. Transcutaneous carbon dioxide attenuates impaired oxidative capacity in skeletal muscle in hyperglycemia model. *Gen Physiol Biophys* 2019;38:237-244

16. Akamine T, Taguchi N. Effects of an Artificially Carbonated Bath on Athletic Warm-up. *J Human Ergo* 1998;27:22-29

17. Ueha T, Oe K, Miwa M, et al. Increase in carbon dioxide accelerates the performance of endurance exercise in rats. *J Physiol Sci* 2017;DOI: 10.1007/s12576-017-0548-6

18. Hanly E, Fuentes J, Aurora A, et al. Carbon dioxide pneumoperitoneum prevents mortality from sepsis. *Surg Endosc* 2006;20:1482-1487

19. Hanly EJ, Bachman SL, Marohn MR, et al. Carbon dioxide pneumoperitoneum–mediated attenuation of the inflammatory response is independent of systemic acidosis. *Surgery* 2005;137:559-566

20. Galganska H, Jarmuszkiewicz W, Galganski L. Carbon dioxide inhibits COVID-19-type proinflammatory responses through extracellular signalregulated kinases 1 and 2, novel carbon dioxide sensors. *Cell . Mol . Life Sci* 2021;78:8229-8242

21. Takeda D, Hasegawa T, Ueha T, et al. Transcutaneous carbon dioxide induces mitochondrial apoptosis and suppresses metastasis of oral squamous cell carcinoma in vivo. *PloS One* 2014;9:e100530

22. Harada R, Kawamoto T, Ueha T, et al. Reoxygenation using a novel CO2 therapy decreases the metastatic potential of osteosarcoma cells. *Exp Cell R* 2013;319:1988-1997

23. Iwata E, Hasegawa T, Takeda D, et al. Transcutaneous carbon dioxide suppresses epithelial-mesenchymal transition in oral squamous cell carcinoma. *Int J Oncology* 2016;48:1493-1498

24. Onishi Y, Akisue T, Kawamoto T, et al. Transcutaneous application of CO2 enhances the antitumor effect of radiation therapy in human malignant fibrous histiocytoma. *Int J Oncology* 2014;45:732-738

25. Onishi Y, Kawamoto T. Transcutaneous Application of Carbon Dioxide (CO2) Enhances Chemosensitivity by Reducing Hypoxic Conditions in Human Malignant Fibrous Histiocytoma. *J Cancer Sci & Ther* 2012;4

26. Keogh CE, Scholz CC, Rodriguez J, Selfridge AC, von Kriegsheim A, Cummins EP. Carbon dioxide-dependent regulation of NF-kappaB family members RelB and p100 gives molecular insight into CO2-dependent immune regulation. *J* . *Biol* . *Chem* . 2017;292:11561-11571

27. Duling BR. Changes in Microvascular Diameter and Oxygen Tension Induced by Carbon Dioxide. *Circ Res* 1973;32:370-376

28. Carr P, Graves JE, Poston L. Carbon dioxide induced vasorelaxation in rat mesenteric small arteries precontracted with noradrenaline is endothelium dependent and mediated by nitric oxide. *Pflug Arch Eur J Phy* 1993;423:343-345

29. Sakai Y, Miwa M, Oe K, et al. A novel system for transcutaneous application of carbon dioxide causing an "artificial Bohr effect" in the human body. *PloS One* 2011;6:e24137

30. Oe K, Ueha T, Sakai Y, et al. The effect of transcutaneous application of carbon dioxide (CO2) on skeletal muscle. *Biochem Bioph Res Co* 2011;407:148-152

31. Inoue S, Moriyama H, Yakuwa T, et al. Transcutaneous carbon dioxide improves contractures after spinal cord injury in rats. *Clin Orthop Relat Res* 2019;477:1934-1946

32. Inoue M, Sakai Y, Oe K, et al. Transcutaneous carbon dioxide application inhibits muscle atrophy after fracture in rats. *J Orthop Sci* 2019;

33. D'Arcangelo D, Facchiano F, Barlucchi L, et al. Acidosis inhibits endothelial cell apoptosis and function and induces basic fibroblast growth factor and vascular endothelial growth factor expression. *Circ Res* 2000;86:312-318

34. Bolevich S, Kogan A, Zivkovic V, et al. Protective role of carbon dioxide (CO2) in generation of reactive oxygen species. *Mol Cell Biochem* 2016;411:317-330

35. Veselá A, Wilhelm J. The role of carbon dioxide in free radical reactions of the organism. *Physiol Res* 2002;51:335-339

36. Selfridge AC, Cavadas MAS, Scholz CC, et al. Hypercapnia Suppresses the HIF-dependent Adaptive Response to Hypoxia. *J Biol Chem* 2016;291:11800-11808

37. Maruyama K, Okada T, Ueha T, et al. In vivo evaluation of percutaneous carbon dioxide treatment for improving intratumoral hypoxia using 18F-fluoromisonidazole PET-CT. *Oncology Letters* 2021;21:207

38. Kaldenhoff R, Kai L, Uehlein N. Aquaporins and membrane diffusion of CO2 in living organisms. *Biochimica et biophysica acta* 2014;1840:1592-1595

39. Cornelia Geers, Gerolf Gros. Carbon Dioxide Transport and Carbonic Anhydrase in Blood and Muscle. *Physiol Rev* 2000;80:681-715

40. Jensen FB. Red blood cell pH, the Bohr effect, and other oxygenationlinked phenomena in blood O2 and CO2 transport. *Acta Physiologica* 2004;182:215-227

41. Huckstepp RTR, Id Bihi R, Eason R, et al. Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. *J Physiol* 2010;588:3901-3920

42. Xu Y, Elimban V, Dhalla NS. Carbon Dioxide Water-bath Treatment Augments Peripheral Blood Flow through the Development of Angiogenesis. *Can . J . Physiol . Pharmacol .* 2017;

43. Chen Y, Cann MJ, Litvin TN, et al. Soluble Adenylyl Cyclase as an Evolutionarily Conserved Bicarbonate Sensor. *Science* 2000;289:625-628

44. Akça O, Sessler DI, Delong D, Keijner R, Ganzel B, Doufas AG. Tissue oxygenation response to mild hypercapnia during cardiopulmonary bypass with constant pump output. *British J Anaes* 2006;96:708-714

45. Akça O, Doufas AG, Morioka N, Iscoe S, Fisher J, Sessler DI. Hypercapnia improves tissue oxygenation. *Anesthesiology* 2002;97:801-806

46. Jankov RP, Kavanagh BP, Teixeira L, et al. Therapeutic hypercapnia prevents chronic hypoxia-induced pulmonary hypertension in the newborn rat. *Amer J Physiol.* 2006;291:L912

47. Shigemura M, Lecuona E, Sznajder JI. Effects of hypercapnia on the lung. *J Physiol* 2017;595:2431-2437

48. Sinclair SE, Kregenow DA, Lamm WJE, Starr IR, Chi EY, Hlastala MP. Hypercapnic Acidosis Is Protective in an In Vivo Model of Ventilator-induced Lung Injury. *Amer J Resp and Crit Care Med* 2002;166:403-408

49. Wang Z, Su F, Bruhn A, Yang X, Vincent J. Acute Hypercapnia Improves Indices of Tissue Oxygenation More than Dobutamine in Septic Shock. *Amer J Resp and Crit Care Med* 2008;177:178-183

50. Bedu M, Cheynel J, Gascard J, Coudert J: Transcutaneous CO₂ diffusion comparison between CO₂ spa water and dry gas in royal thermal spa, in Advances in Vascular Pathology. Edited by Strano A, Novo S. Elsevier Science Publishers B. V. (Biomedical Division), 1989, pp 1109-1113

51. Vaupel P. Effect of percentual water content in tissues and liquids on the diffusion coefficients of O2, CO2, N2, and H2. *Pflugers Archiv : European journal of physiology* 1976;361:201-204

52. Alkalay I, Suetsugu S, Constantine H, Stein M. Carbon dioxide elimination across human skin. *Amer J Physiol* 1971;220:1434

53. Sutton I: Solubility of O2, N2, H2 and CO2 in water, in Process Risk and Reliability Management. Edited by Anonymous Elsevier, 2015, pp 209-239

54. Sakai Y, Ueha T, Akisue T, et al. Optimization of antitumor treatment conditions for transcutaneous CO2 application: An in vivo study.(carbon dioxide). *Onc Reports* 2017;37:3688